Two days, five themes, over 30 inspiring presentations

The presentations will be grouped into five key themes which collectively provide complete coverage of the integrated photonics industry.

The PIC International conference has attracted industry leading experts from all the major companies involved in the photonic integrated circuit industry.

If you are interested in speaking at PIC International 2019, please contact info@picinternational.net or call +44 (0)24 76718970.


Speakers Include

Michael Liehr
Ronald Broeke
Henk Bulthuis
Martin Guy
Callum Littlejohns
Jose Pozo
Martijn Heck
John Magan
Katharine Schmidtke
Ignazio Piacentini
Martin Schell
Di Liang
Kei May Lau
Mehrdad Ziari
Marco Romagnoli
Robert Blum
David Cheskis
Dirk Van Den Borne
Michael Geiselmann
Pauline Rigby
Michael Lebby
Paul van Dijk
Pieter Dumon
James Pond
Alan Sherman
Ruth Houbertz
Jochen Zimmer
Shigeru Nakamura
Nick Psaila
Takahiro Nakamura
Albert Hasper
René Penning de Vries
Scott Jordan
Andrew Rickman
Stefan Meister
Luc Augustin
Eric Higham
Twan Korthorst
Arnaud Rigny
Peter O'Brien
André Richter


 Conference Chair


Michael Lebby, Chair in Optoelectronics at Glyndŵr University, CEO at Lightwave Logic Inc

Presently, Michael is driving new frontiers in the integrated photonics field as: CEO and Board Director, Lightwave Logic Inc. Michael is also part-time full Professor and Chair of optoelectronics at Glyndwr University in Wales, UK where he contributes to the European Commission’s programs and pilot lines in integrated photonics. Michael has been involved in photonics for his whole career which began with research for the UK Government R&D labs in 1977, and continued at AT&T Bell Labs in 1984. At that time, Michael’s activities included researching novel optoelectronic devices in III-V compound semiconductors. Michael then went to Motorola’s Corporate R&D labs in 1989 and drove the VCSEL based technology platform to product and high volume manufacturing. He continued his fiber optics roles at AMP/TE Connectivity, and then helped initiate Intel’s silicon photonics work in 1999. In 2001, he founded his own company Ignis Optics to develop OC-48/192 transceivers and subsequently sold the company to Bookham (now Oclaro). Michael then led OIDA (Optoelectronics Industry Development Association) in Washington DC to campaign on behalf of the photonics industry. At OIDA Michael coined the term ‘green photonics’ and established this as discipline in the industry. Michael also spoke on Capitol Hill representing the optoelectronics industry. Since 2010, Michael has been focusing on bringing PIC (Photonic Integrated Circuit) based technologies to market in various roles that include Solar, LED lighting, and Integrated Photonics for fiber communications. Michael is pursuing high speed polymer based integrated photonics as part of a polymer PIC platform at Lightwave Logic Inc.


William Ring, Senior VP, POET Technologies

Bill Ring is currently a Senior VP at Poet Technologies where his work encompasses both III-V devices and dielectric technology. The major focus of the Dielectric waveguide development is currently on the introduction of Poet’s Optical Interposer Platform utilizing a low loss dielectric waveguide that is deposited and compatible with current CMOS processes. Previously, Bill was CEO of BB Photonics Inc., a start up developing uncooled 100GbE receivers using InP PICs with embedded dielectric waveguides. This was sold to Poet Technologies in June 2016. From 2010 to 2014, Bill was involved in the due diligence and purchase of Solar Systems Pty Ltd, an Australia concentrated photovoltaic company, where he subsequently held the roles of GM and then Chief Technology Officer for the company. Prior to this, he had started a consulting company in 2005 that worked with several fortune 500 companies and many start-up companies in the areas of defense, optoelectronic components and datacenter optical devices. During this period he also managed workshops for the USA based Optoelectronic Industry Development Association (OIDA) from 2005 to 2009. Before 2005 Bill held positions at Tyco Electronics, as Director of Operations and Director of development for devices and transceivers. Before joining Tyco, he was a Principle Engineer at Hewlett Packard (HP) and responsible for the design and development of 1310nm FP, 1480nm pump and DFB lasers for HP’s fiber optics group. In 1995 he introduced the first strained MQW laser into production at HP's UK facility that was later deployed in HP’s 1300nm SFF/SFP transceivers. Bill Holds a PhD from Surrey University in III-V light emitting devices, which showed that Intervalence Band Absorption (IVBA) was not the dominant loss mechanism in long wavelength lasers.



Panel: Will PICs be the engine of growth over the next decade? Is the growth supported in our roadmaps world-wide?

The increasing demand for higher speed data transmission has ramifications across all network operations. Mobile operators expect 5G to meet customer demands with data rates up to 1 G/bps. The demands for fiber networks – the backbone of high capacity data conveyance – are far greater. As PICs move into 100G data center slots, the push for ever-faster, higher bandwidth intra- and inter-center communications continues. At the same time, photonic integrated circuits are relatively new technology, with automated TAP far behind state-of-the-art microelectronics manufacturing. Can PICs support advanced datacom and long-distance telecom applications as reflected in our global technology roadmaps?

Moderator
Michael Lebby
Lightwave Logic
Martin Schell
Fraunhofer HHI
Michael Liehr
American Institute for Manufacturing Photonics
Werner Steinhögl
European Commission Photonics Unit
Takahiro Nakamura
PETRA
Wyn Meredith
IQE
Marco Romagnoli
INPHOTEC


Panel: How does the PIC industry deliver on the promises of size, speed, and economy with high quality?

PIC devices offer size, performance and energy advantages that have enabled rapid growth among optical component manufacturers while encouraging entrants offering new and novel insights. End users need high levels of consistent quality--the hallmarks of CMOS device fabrication--while process tool, assembly and test automation experts strive to support the unique requirements of PIC module TAP. Today’s PIC-based transceivers or PIC transceiver components are often assembled, packaged and tested manually. Is it possible to drive demand while the infrastructure needed to support it is still being conceived, designed and built?

Moderator
Robert Blum
Intel
Katharine Schmidtke
Facebook
Mehrdad Ziari
Infinera
Stefan Meister
Sicoya
Andrew Rickman
Rockley Photonics


  PICs Today − Datacom, Imaging and Transport - Sponsored By


PIC differentiation, emerging markets, and common modular platforms for assembly and test.

Ignazio Piacentini - ficonTEC

Differentiation in the assembly and test process requirements between photonic devices in emerging markets has consequences for automated production equipment. Modularity in the approach to system layout provides the tools for addressing these differences, where both common application-specific platforms and custom configurations become the norm. But the benefits don’t end there.



New VCSEL opportunities in 3D sensing and beyond

Pauline Rigby - Lightcounting

Vertical-cavity surface emitting lasers (VCSELs) have been the workhorse of datacom networks for several decades – lighting up multimode fibres at wavelengths around 850nm – but new opportunities in consumer markets require product volumes that are orders of magnitude greater - with visible effects on the revenues reported by key components vendors. Apple pioneered 3D sensors for facial recognition in smartphones and world-facing 3D sensors to enable AR/VR will be next. New opportunities for lasers in lidar systems for autonomous driving are also on the horizon.



The future and economics of PICs and PLCs in data center applications

Henk Bulthuis - Broadex Technologies

Awaiting abstract.



PhotonDelta: Gateway to Indium Phosphide, TripleX and PIC Solutions

René Penning de Vries - Photon Delta

Awaiting abstract.



Integration of InP PICs Across Future Networks and Markets

Mehrdad Ziari - Infinera

Awaiting abstract.



Achieving high quality 100G data center PIC Integration

Katharine Schmidtke - Facebook

Awaiting abstract.



Device prototyping using the CORNERSTONE platform

Callum Littlejohns - Cornerstone, University of Southampton

As the market adoption of silicon photonics technologies continues to rise, and ever more fabless companies enter the market, there is a clear need for a flexible device prototyping foundry service that retains the ability for device level innovation, and also offers a clear path for up-scaling. The CORNERSTONE platform offers a low cost multi-project-wafer (MPW) service that enables a degree of customisation, which may not be accessible at other foundries. Through the use of projection lithography, fabrication processes can be easily transferred to other foundries for mass production. Additionally, the ability to exploit high resolution e-beam lithography mimics more advanced technology nodes for certain layers, should this be deemed necessary. This talk gives an overview of the CORNERSTONE platform.



AIM Photonics’ role in developing next generations of PICs and TAP manufacturing expertise

Michael Liehr - American Institute for Manufacturing Photonics

AIM Photonics is a Manufacturing USA institute whose mission is to provide cost-effective and easy-to-use access to state-of-the-art silicon photonics processing. AIM Photonics is providing access to a Multi-Project-Wafer program enabled with a highly competitive component library and offers Assembly and Packaging services starting 2019. AIM is supporting consortium projects with the intent to enable new manufacturing technology for reduced assembly cost, but is also developing custom processes in support of industry or government funded PIC products. AIM has a Si Photonics process available at SUNY Poly and an InP offering at Infinera and potential application examples will be discussed.



A unified silicon photonics platform for communications, imaging and sensing

Andrew Rickman - Rockley Photonics

Awaiting abstract.


  PIC Innovation − EPDA, TAP & PICs Beyond Datacom - Sponsored By


Photonics and EDA – Round Hole and Square Pegs

Alan Sherman - Mentor, a Siemens Business

IC designers & tool developers have lived in an orthogonal world for 60 + years. Hundreds  of thousands of man years have been invested developing EDA tools for IC design. This investment representing 100’s of millions of lines of code. Photonics and MEMS have  changed this.  For integrated photonics to take off, commercial EDA tools are needed that can implement and physically verify curved shapes. Throughout the design flow, support is needed for coexistence of both electrical and photonic designs. Layout automation is required to enable the expected growth in the size of photonics designs.



Hybrid PICs - Technology Alternatives and Design Implications

André Richter - VPIphotonics

Hybrid integrated photonics attracts growing attention, as it enables complete and cost-efficient optical chip solutions for silicon, silicon nitride, and polymer photonics in combination with III-V active optoelectronic devices. We present different practical examples of hybrid PICs, discuss associated design challenges and our approaches to their solution. We illustrate a smoothly elaborated common design workflow, which is based on standard simulation compact models and a layout-aware design approach. We demonstrate user-friendly optoelectronic circuit simulation, optimization and analysis, as well as performance verification on system-level. 




Scalable PIC design: increasing yield of components, circuits and systems

James Pond - Lumerical

Tremendous progress has been made in recent years in PIC design and manufacturing. Nonetheless, manufacturing variations and the inevitable impact on yield remains a significant challenge. Active tuning can sometimes be a solution, but the necessary system complexity and power budgets can be prohibitive. We discuss design methods to maximize yield that account for a knowledge of design variations from specific foundry processes. These methods include inverse design approaches at the component level to large scale statistical simulation of circuits using calibrated compact models.



Putting the A in Design Automation

Pieter Dumon - Luceda Photonics

Whether you’re designing a photonic IC prototype or ramping up a product, you need methodologies and tools to increase your design’s yield. In this talk, we will discuss methodologies for building high quality device models, running device and circuit level variability analysis and turning these into real tape-outs. We will show how Luceda puts the Automation in E(P)DA to enable fundamentally different workflows.



Open access integration platform: versatile solution for photonic integrated circuits

Luc Augustin - Smart Photonics

InP based photonic components have been around for some time and have proven to be a reliable source for communication systems. InP offers the possibility to monolithically integrate high performance active and passive components. These aspects, and the introduction of generic platforms: highly standardized industrial photonic integration processes that enable realization of a broad range of applications, will lead to a dramatic reduction of the development costs of PICs which will bring them within reach for many. This talk will address the integration platform from a foundry perspective: the integration technology, the opportunities and the scale-up to large volumes.



Developments in PIXAPP – the photonic packaging pilot line

Peter O'Brien - Tyndall




Open access manufacturing for PICs – bringing volume manufacturing to new markets

Martijn Heck - ePIXfab – European Silicon Photonics Alliance

PICs are most widely used in telecom and datacom. These markets have typically been vertically integrated, with the manufacturers owning the production facility or, at least, the process. Such business models will likely not work other markets, where the threshold in terms of cost and lack of expertise is too high. Creating generic PIC processes with standardized building blocks, such as lasers, modulators and detectors, which are accessible through multi-project wafer runs, was the first step to successfully lower this threshold. Now the time is here to scale these generic processes up from prototype-level to open access volume manufacturing.



Advanced VCSEL PIC manufacturing

David Cheskis - IQE

VCSEL technology and manufacturing capabilities have advanced dramatically in the last several years with the adoption of high volume applications. The establishment of 6-inch GaAs VCSEL manufacturing processes has opened the door to new opportunities – and provided new challenges. This presentation will discuss VCSEL manufacturing advances that have allowed the industry to scale fabrication to meet these challenges and provide more capacity than ever before. We will also introduce new Photonic Quasi-Crystal (PQC) technology that will enable additional photonic component integration directly onto VCSEL wafers.  




Rethinking the photonics IC design flow to make high-quality PIC design easier, cheaper and faster

Ronald Broeke - BRIGHT Photonics

Awaiting abstract.



The Emergence of Non-Position Positioning in Fast Manufacturing Automation

Scott Jordan - Physik Instrumente

Requirements have escalated for perfect relative positioning of manufactured components. Examples: In Silicon Photonics, orientation of components to extreme tolerances is needed in multiple test and assembly steps. In Smartphone camera manufacturing, more elements are assembled to tighter tolerances with each generation.   Previously this demanded exceptional dimensional control and fixturing, or painstaking positioning. But a new branch of intelligent control now provides fast, automatic, nanoscale-accurate orientation optimization in test and assembly. This improves process economics and yield by eliminating time-consuming steps and decoupling alignment from position metrology. The key is leveraging device optimization physics to reduce dependence on position commandability. A universal implementation is now commercially available and fab-proven. Process cost reductions of 99% are seen. 




Large scale assembly and packaging foundry for PICs

Albert Hasper - Phix

PHIX mission is to become world leader foundry in packaging and assembly of Photonic Integrated Circuits (PIC’s) by supplying PIC based components and modules in scalable production volumes. PHIX photonics assembly is a new initiative to facilitate our customers in the assembly of all packaging challenges for PICs including product design for manufacturing. The talk will highlight the roadmap from pilot line production towards HVM-production. Key is to have the right capabilities and capacities needed to serve our customers. Further, automated tools and machines are needed to address the future needs, this will also be discussed



How Synopsys Is Driving the PIC Revolution with a Trusted and Scalable Design Flow

Remco Stoffer - Synopsys

Awaiting abstract.


  PICs Reimagined − Hybrids and Materials Innovation


Industrial Scale High Precision 3D Printing for in situ packaging

Ruth Houbertz - Multiphoton Optics

High precision 3D printing (HP3DP) is a powerful tool for rapid prototyping of miniaturized designs in automated, scalable processes, providing a real 3D technique suitable for the fabrication of optically high quality surfaces with industrial scale throughput, highest resolution, and a unique degree of freedom of structure generation. Most of the legacy processes nowadays needed for complex structure fabrication can be simply avoided, enabling a significant reduction of resources, of production cost and time to market. The usefulness of HP3DP to be implemented in industrial work flows will be demonstrated by discussing different application scenarios, ranging from LED to laser die packaging, microoptical elements and arrays for rapid prototyping of novel designs up to the manufacturing level. 



III-V Lasers directly grown on Silicon

Kei May Lau - Hong Kong University of Science & Technology

To support an energy-efficient optical interconnect technology enabled by silicon photonics, development of low-power-consumption active devices and associated integration technologies is needed. Most communication wavelength lasers with excellent device performance have been grown on III-V substrates and bonded to silicon. For monolithic integration, growth and fabrication of such lasers on III-V/ Si compliant substrates is another option. QDs grown on compliant III-V/Si substrates and laser characteristics of whispering-gallery-mode (WGM) micro-lasers, and conventional Fabry Perot lasers will be discussed. Another approach involves nano-ridge lasers with embedded quantum wells grown on stripe patterned on-axis Si substrates or SOI. Room temperature lasing inside nano-cavities at telecom bands is challenging and has only been demonstrated up to the E band. We have achieved InP/InGaAs nano-ridge lasers resulting in emission wavelengths ranging from the O-, E-, S- to C-band operating at room temperature with ultra-low lasing thresholds. These energy-efficient micro-lasers are excellent candidates for on-chip integration with silicon photonics.



Additive manufacturing by two-photon-polymerization for photonic integration

Jochen Zimmer - Nanoscribe

Two-photon-polymerization can be used for the direct printing of complex micro- and mesoscale 3D parts. These parts can be transparent, have optical-quality surfaces, and be printed on pre-structured surfaces such as PICs. Each part can be printed with parameters optimized for the individual assembly it is printed on. Thus, this technology offers an interesting way to integrate components from different sources.



Vertical integration in SiN based foundry enables new applications

Paul van Dijk - LioniX International

The integration of Photonic Integrated Circuits (PICs) in functional modules enables endusers to use PICs in a variety of applications. Due to the hybrid integration of multiple platforms in a single module a variety of new applications can be addressed. For the silicon nitride based TriPleX platform these range from 5G to virtual reality and sensing. The main benefit is in the low loss properties over a large wavelength range enabling these different applications. In this talk we will show the capabilities of these modules and the necessity for vertical integration. It is all about module functionality and not about PICs.



Polymer PIC opportunities in Applications Beyond 100G

Michael Lebby - Lightwave Logic

Awaiting abstract.



New advances in Silicon Nitride (siN) PIC Applications

Michael Geiselmann - LIGENTEC

Silicon nitride photonic integrated circuits offer new possibilities for existing and emerging applications. Application such as Beamforming, Augmented Reality, Quantum and nonlinear integrated photonics and Bio-sensing benefit from a transparency window from the visible to the Mid-Infrared and the ultra-low losses in those wavelength ranges.

LIGENTEC's fabrication process is based on the all-nitride-core technology and designed from the bottom up for photonics and modularity. In the all-nitride-core, most of the optical mode energy is in the waveguide material, which reduces loss and makes small bending radii possible. Latest developments on further integration of active elements and modules are presented.




Silicon photonics - integration of materials, devices and ecosystem

Di Liang - Hewlett Packard Enterprise

Silicon has proved itself to be an attractive platform for integrated photonics; Silicon also proved itself still miles away to completely demonstrate its technical and commercial potentials. This talk will review our most recent technical advance in material and device innovation for versatile applications. I will also attempt to discuss our vision to a scalable and sustainable ecosystem which will facilitate silicon photonics to eventually become a volume business. 



Optical passive device platform to enhance photonics performances

Arnaud Rigny - Teem Photonics

One optical component integration challenge is to bring together active and passive functions with very different technical constraints. Compromise is often hard to come on single technology platform making multi-platform solutions attractive.  The glass platform is a solution of choice to make the optical link between source and fiber by integrating low-loss, temperature-stable passive interface solutions. Teem photonics, expert in ion exchange technology on glass ( IoNext ) , is developing an innovative solution providing a unique low-loss collective coupling technology integrating passive functions (taps, splitter, multiplexer, ... ), compatible with most of active photonic integration platforms (SiPh, PIC, SiN ...)  




The application of silicon photonics to optical switches with low-loss, polarization insensitive, low cross-talk capabilities

Shigeru Nakamura - NEC Corporation

The evolution of information society definitely requires various optical functional devices for telecom, datacom, and sensing. Photonic integrated circuits for optical transceivers provided by silicon photonics is now being established to the product level. Expanding the application of silicon photonics to other functional devices such as optical switches is highly expected. Considering typically smaller product volume of such functional devices, design for obtaining necessary function while minimizing additional special process in fabrication is important. We have been developing optical switches based on silicon photonics. I will talk about design, fabrication, and evaluation results on the optical switch module including silicon optical circuits and optical coupling structure to fiber array for low loss, polarization insensitive, low cross-talk properties.


  PIC ROI − Show Me the Money


Coherent DWDM router interfaces: Opportunities for photonic integration

Dirk Van Den Borne - Juniper

Small form factor 400G digital coherent optical (DCO) modules are the most exiting technology development in DWDM transport since the introduction of coherent detection a decade ago. In this talk, we will focus on this new class of pluggable DCO modules from a system vendor perspective and discuss the different applications that they are expected to address. In particular, we will detail the advantages and challenges involved in using pluggable DCO modules in dense routing and switching platforms. Finally, we will consider how further optical integration and DSP development can enable an even broader use of pluggable DCO modules. 



Assessing the long-term growth and market potential for PIC devices in datacom, transport and networks

Eric Higham - Strategy Analytics

Historically, growth of optical markets was sinusoidal; periods of sharp contraction followed times of booming expansion in a repeating pattern. While the past was not for the faint of heart, recent performance shows that the optical market has gotten far less volatile, with a strong upward growth trajectory. This presentation will explore the shift in drivers for optical market growth and the trends for the future. It will also address the advantages and disadvantages of Photonic Integrated Circuits (PIC), their most likely applications and the use of compound semiconductor technologies in PICs, as well as the broader optical market.


  PICs Beyond 100G − Evolution and Revolution


Driving the PIC Revolution, Case Scenarios

Twan Korthorst - Synopsys

Synopsys is driving the photonic integrated circuit (PIC) revolution with design automation solutions for a wide range of application requirements, from data communications to sensors and biomedical devices. Synopsys’ PIC Design Suite – which includes the OptSim Circuit and OptoDesigner tools – offers a seamless PIC design flow from concept to manufacturable design, as well as access to a single, world-class support channel.



The benefits of low-barrier access to new production services for PICs today and tomorrow

Jose Pozo - EPIC

The requirement for new technologies able to support faster, more efficient and less consuming devices has triggered the adoption of Photonic Integrated Circuits (PICs) for many different applications. The Pilot Lines in Photonics provide a fast service for prototyping and low-volume production of Photonic Integrated Circuits (PIC)-based products helping companies to reduce the time-to-market. The Pilot Lines, PIXAPP – for packaging and assembly PICs, MIRPHAB – for developing QCLs based chemical sensors, and PIX4LIFE – Si3N4 PICs for life sciences cover a wide range of applications from telecom to healthcare, including environmental monitoring and industrial sensing.



Photonic Integration Opportunities for Next-Generation Coherent High-Capacity Systems

Martin Guy - Ciena Corporation

Next-generation high-capacity optical coherent transmission systems at 400G and above will demand different set of requirements depending on the target applications. Long haul and ultra-long haul systems such as submarine and inter-continental links will have to be optimized for fiber capacity and reach. Shorter-reach applications such as metro, DCI and 5G access links will need low power and high density pluggable modules. From an optical components perspective, the right combination of photonic integration technologies will be mandatory to address all the stringent requirements related to bandwidth, size, power and cost. In this presentation, we will review the opportunities associated with InP and Silicon Photonics optical material platforms and photonic packaging technologies to address the challenges of next-generation high-capacity optical coherent transmission systems.



The critical role that EC support for photonics and PIC devices plays in our manufacturing future.

John Magan - European Commission Photonics Unit

Recognising the importance of photonics and PICs, the EU’s ICT research programme has worked with the photonics industry and research community to run a series of actions to build up a technology base in Europe, particularly in PIC manufacturing. This presentation will review these actions, consider the lessons learned, and look to further opportunities for support and the next research programme beyond 2020: Horizon Europe.



3D laser written glass components for advanced photonic integration

Nick Psaila - Optoscribe

The persistent drive for increased bandwidth and density while simultaneously reducing cost in datacenter optical communication systems is placing substantial pressures on component manufacturers to increase the level of integration and adopt more efficient and lower cost assembly processes.

Ultrafast lasers offer a unique tool for the integration of photonic components in this application. The talk will show how this can be used for manufacturing glass-based interconnect components, which are applied to both fiber-fiber and fiber-transceiver applications. The talk will show how these components can be used as optical interfaces or further combined with conventional processes to help solve challenges in the packaging of photonic components. In addition to this the talk will also show how these components can be used as integration platforms for optical sub-assemblies and photonic-electronic interposers.




Integrated Silicon Photonics for future Datacenter Applications

Thomas Liljeberg - Intel

The rapid growth in data center traffic is driving accelerating requirement to the bandwidth and performance of networking equipment, including optical interfaces and Ethernet switches. Looking ahead, bandwidth scalability challenges are looming in terms of density, cost, and power; challenges that require tighter integration of optics and networking silicon. We will review motivation for integration and the enabling technology elements, and discuss how co-packaged Silicon Photonics enables higher density, reduced power per bit, and ultimately the continued scalability of network bandwidth and performance.


*All speakers and presentations are subject to change.

Book your place today for 2019 - 3 events, 2 days, 1 ticket
The must attend conference for all professionals involved within the integrated photonics industry.